Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(2): e0316523, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236031

RESUMO

Hospital-acquired pneumonia (HAP) is a leading cause of morbidity and mortality, commonly caused by Pseudomonas aeruginosa. Meropenem is a commonly used therapeutic agent, although emergent resistance occurs during treatment. We used a rabbit HAP infection model to assess the bacterial kill and resistance pharmacodynamics of meropenem. Meropenem 5 mg/kg administered subcutaneously (s.c.) q8h (±amikacin 3.33-5 mg/kg q8h administered intravenously[i.v.]) or meropenem 30 mg/kg s.c. q8h regimens were assessed in a rabbit lung infection model infected with P. aeruginosa, with bacterial quantification and phenotypic/genotypic characterization of emergent resistant isolates. The pharmacokinetic/pharmacodynamic output was fitted to a mathematical model, and human-like regimens were simulated to predict outcomes in a clinical context. Increasing meropenem monotherapy demonstrated a dose-response effect to bacterial kill and an inverted U relationship with emergent resistance. The addition of amikacin to meropenem suppressed the emergence of resistance. A network of porin loss, efflux upregulation, and increased expression of AmpC was identified as the mechanism of this emergent resistance. A bridging simulation using human pharmacokinetics identified meropenem 2 g i.v. q8h as the licensed clinical regimen most likely to suppress resistance. We demonstrate an innovative experimental platform to phenotypically and genotypically characterize bacterial emergent resistance pharmacodynamics in HAP. For meropenem, we have demonstrated the risk of resistance emergence during therapy and identified two mitigating strategies: (i) regimen intensification and (ii) use of combination therapy. This platform will allow pre-clinical assessment of emergent resistance risk during treatment of HAP for other antimicrobials, to allow construction of clinical regimens that mitigate this risk.IMPORTANCEThe emergence of antimicrobial resistance (AMR) during antimicrobial treatment for hospital-acquired pneumonia (HAP) is a well-documented problem (particularly in pneumonia caused by Pseudomonas aeruginosa) that contributes to the wider global antimicrobial resistance crisis. During drug development, regimens are typically determined by their sufficiency to achieve bactericidal effect. Prevention of the emergence of resistance pharmacodynamics is usually not characterized or used to determine the regimen. The innovative experimental platform described here allows characterization of the emergence of AMR during the treatment of HAP and the development of strategies to mitigate this. We have demonstrated this specifically for meropenem-a broad-spectrum antibiotic commonly used to treat HAP. We have characterized the antimicrobial resistance pharmacodynamics of meropenem when used to treat HAP, caused by initially meropenem-susceptible P. aeruginosa, phenotypically and genotypically. We have also shown that intensifying the regimen and using combination therapy are both strategies that can both treat HAP and suppress the emergence of resistance.


Assuntos
Infecção Hospitalar , Pneumonia Associada a Assistência à Saúde , Infecções por Pseudomonas , Animais , Humanos , Coelhos , Meropeném/farmacologia , Pseudomonas aeruginosa , Amicacina/farmacologia , Amicacina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pneumonia Associada a Assistência à Saúde/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
J Antimicrob Chemother ; 78(4): 1015-1022, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857467

RESUMO

BACKGROUND: There are limited data describing clinical flucytosine pharmacokinetics (PK). The variability of flucytosine partitioning into the CNS is not known. We described the interindividual variability in flucytosine PK in patients with HIV-associated cryptococcal meningoencephalitis. In addition, we quantified the extent and variability of CSF partitioning of flucytosine. METHODS: A PK study was conducted in 64 patients with confirmed HIV-associated cryptococcal meningoencephalitis in Blantyre, Malawi. A four-compartment PK model was developed, and Monte Carlo simulations were performed with flucytosine administered at different doses and in different schedules. RESULTS: The estimated mean apparent volume of the central compartment was 17.50 (SD 9.99) L; mean apparent clearance was 5.88 (SD 3.35) L/h; mean apparent volume of the CNS compartment was 41.73 (SD 13.66) L. From the Bayesian posterior estimates, AUC24 values at steady state (144-168 h) with doses of 25 mg/kg q6h were median (IQR) 890.38 (603.81-1213.70) mg.h/L in plasma and 595.66 (425.69-776.64) mg.h/L in CSF. The ratio of CSF:plasma AUC24 was 0.69 (IQR 0.58-0.82). CONCLUSIONS: This study revealed significant interindividual variability in flucytosine PK in plasma and CSF in patients with HIV-associated cryptococcal meningoencephalitis. The population PK model is a first critical step for revised flucytosine regimens that maximize fungal killing and minimize toxicity and the emergence of resistance.


Assuntos
Cryptococcus neoformans , Infecções por HIV , Meningite Criptocócica , Meningoencefalite , Humanos , Adulto , Flucitosina , Antifúngicos/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Teorema de Bayes , Meningoencefalite/tratamento farmacológico , Meningoencefalite/microbiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico
3.
J Antimicrob Chemother ; 78(1): 276-283, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36411251

RESUMO

BACKGROUND: Single, high-dose liposomal amphotericin B (LAmB; AmBisome, Gilead Sciences) has demonstrated non-inferiority to amphotericin B deoxycholate in combination with other antifungals for averting all-cause mortality from HIV-associated cryptococcal meningitis. There are limited data on the pharmacokinetics (PK) of AmBisome. The aim of this study was to describe population PK of AmBisome and conduct a meta-analysis of the available studies to suggest the optimal dosing for cryptococcal meningoencephalitis. METHODS: Data from a Phase II and Phase III trial of high-dose, short-course AmBisome for cryptococcal meningoencephalitis were combined to develop a population PK model. A search was conducted for trials of AmBisome monotherapy and meta-analysis of clinical outcome data was performed. RESULTS: A two-compartment model with first-order clearance of drug from the central compartment fitted the data best and enabled the extent of inter-individual variability in PK to be quantified. Mean (SD) population PK parameter estimates were: clearance 0.416 (0.363)  L/h; volume of distribution 4.566 (4.518) L; first-order transfer of drug from central to peripheral compartments 2.222 (3.351)  h-1, and from peripheral to central compartment 2.951 (4.070)  h-1. Data for the meta-analysis were insufficient to suggest optimal dosing of AmBisome for cryptococcal meningoencephalitis. CONCLUSIONS: This study provides novel insight into the PK of AmBisome at the population level and the variability therein. Our analysis also serves to highlight the paucity of data available on the pharmacodynamics (PD) of AmBisome and underscores the importance of thorough and detailed PK/PD analysis in the development of novel antifungals, by demonstrating the challenges associated with post hoc PK/PD analysis.


Assuntos
Cryptococcus neoformans , Infecções por HIV , Meningite Criptocócica , Meningoencefalite , Humanos , Antifúngicos/farmacologia , Meningite Criptocócica/tratamento farmacológico , Meningoencefalite/tratamento farmacológico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico
4.
J Antimicrob Chemother ; 77(12): 3349-3357, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36177766

RESUMO

BACKGROUND: Annual mortality from neonatal sepsis is an estimated 430 000-680 000 infants globally, most of which occur in low- and middle-income countries (LMICs). The WHO currently recommends a narrow-spectrum ß-lactam (e.g. ampicillin) and gentamicin as first-line empirical therapy. However, available epidemiological data demonstrate high rates of resistance to both agents. Alternative empirical regimens are needed. Flomoxef and amikacin are two off-patent antibiotics with potential for use in this setting. OBJECTIVES: To assess the pharmacodynamics of flomoxef and amikacin in combination. METHODS: The pharmacodynamic interaction of flomoxef and amikacin was assessed in chequerboard assays and a 16-arm dose-ranged hollow-fibre infection model (HFIM) experiment. The combination was further assessed in HFIM experiments mimicking neonatal plasma exposures of clinically relevant doses of both drugs against five Enterobacterales isolates with a range of flomoxef/amikacin MICs. RESULTS: Flomoxef and amikacin in combination were synergistic in bacterial killing in both assays and prevention of emergence of amikacin resistance in the HFIM. In the HFIM assessing neonatal-like drug exposures, the combination killed 3/5 strains to sterility, (including 2/5 that monotherapy with either drug failed to kill) and failed to kill the 2/5 strains with flomoxef MICs of 32 mg/L. CONCLUSIONS: We conclude that the combination of flomoxef and amikacin is synergistic and is a potentially clinically effective regimen for the empirical treatment of neonatal sepsis in LMIC settings and is therefore suitable for further assessment in a clinical trial.


Assuntos
Amicacina , Sepse Neonatal , Lactente , Recém-Nascido , Humanos , Amicacina/farmacologia , Amicacina/uso terapêutico , Sepse Neonatal/tratamento farmacológico , Cefalosporinas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Atenção à Saúde
5.
Antimicrob Agents Chemother ; 66(4): e0218121, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35315689

RESUMO

Neonatal sepsis is an underrecognized burden on health care systems throughout the world. Antimicrobial drug resistance (AMR) is increasingly prevalent and compromises the use of currently recommended first-line agents. The development of new antimicrobial agents for neonates and children is mandated by regulatory agencies. However, there remains uncertainty about suitable development pathways, especially because of the propensity of premature babies to develop meningoencephalitis as a complication of neonatal sepsis and difficulties studying this disease in clinical settings. We developed a new platform and approach to accelerate the development of antimicrobial agents for neonatal bacterial meningoencephalitis using Pseudomonas aeruginosa as the challenge organism. We defined the pharmacodynamics of meropenem and tobramycin in these models. The percentage of partitioning of meropenem and tobramycin into the cerebrospinal fluid was comparable at 14.3 and 13.7%, respectively. Despite this similarity, there were striking differences in their pharmacodynamics. Meropenem resulted in bactericidal activity in both the cerebrospinal fluid and cerebrum, whereas tobramycin had minimal antibacterial activity. A hollow fiber infection model (HFIM) using neonatal CSF concentration time profiles yielded pharmacodynamics comparable to those observed in the rabbit model. These new experimental models can be used to estimate the pharmacodynamics of currently licensed agents and those in development and their potential efficacy for neonatal bacterial meningoencephalitis.


Assuntos
Meningoencefalite , Sepse Neonatal , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Meningoencefalite/tratamento farmacológico , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Sepse Neonatal/tratamento farmacológico , Pseudomonas aeruginosa , Coelhos , Tobramicina/farmacologia , Tobramicina/uso terapêutico
6.
J Antimicrob Chemother ; 77(5): 1334-1343, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35170719

RESUMO

BACKGROUND: Neonatal sepsis is a serious bacterial infection of neonates, globally killing up to 680 000 babies annually. It is frequently complicated by antimicrobial resistance, particularly in low- and middle-income country (LMIC) settings with widespread resistance to the WHO's recommended empirical regimen of ampicillin and gentamicin. OBJECTIVES: We assessed the utility of flomoxef and fosfomycin as a potential alternative empirical regimen for neonatal sepsis in these settings. METHODS: We studied the combination in a 16-arm dose-ranged hollow-fibre infection model (HFIM) experiment and chequerboard assays. We further assessed the combination using clinically relevant regimens in the HFIM with six Enterobacterales strains with a range of flomoxef/fosfomycin MICs. RESULTS: Pharmacokinetic/pharmacodynamic modelling of the HFIM experimental output, along with data from chequerboard assays, indicated synergy of this regimen in terms of bacterial killing and prevention of emergence of fosfomycin resistance. Flomoxef monotherapy was sufficient to kill 3/3 strains with flomoxef MICs ≤0.5 mg/L to sterility. Three of three strains with flomoxef MICs ≥8 mg/L were not killed by fosfomycin or flomoxef monotherapy; 2/3 of these were killed with the combination of the two agents. CONCLUSIONS: These data suggest that flomoxef/fosfomycin could be an efficacious and synergistic regimen for the empirical treatment of neonatal sepsis in LMIC settings with prevalent antimicrobial resistance. Our HFIM results warrant further assessment of the flomoxef/fosfomycin combination in clinical trials.


Assuntos
Fosfomicina , Sepse Neonatal , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas , Farmacorresistência Bacteriana , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Sepse Neonatal/tratamento farmacológico
7.
Antimicrob Agents Chemother ; 65(7): e0029321, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33972238

RESUMO

Antimicrobial resistance (particularly through extended-spectrum ß-lactamase and aminoglycoside-modifying enzyme production) in neonatal sepsis is a global problem, particularly in low- and middle-income countries, with significant mortality rates. High rates of resistance are reported for the current WHO-recommended first-line antibiotic regimen for neonatal sepsis, i.e., ampicillin and gentamicin. We assessed the utility of fosfomycin and amikacin as a potential alternative regimen to be used in settings of increasingly prevalent antimicrobial resistance. The combination was studied in a 16-arm dose-ranged hollow-fiber infection model (HFIM) experiment. The combination of amikacin and fosfomycin enhanced bactericidal activity and prevented the emergence of resistance, compared to monotherapy with either antibiotic. Modeling of the experimental quantitative outputs and data from checkerboard assays indicated synergy. We further assessed the combination regimen at clinically relevant doses in the HFIM with nine Enterobacterales strains with high fosfomycin and amikacin MICs and demonstrated successful kill to sterilization for 6/9 strains. From these data, we propose a novel combination breakpoint threshold for microbiological success for this antimicrobial combination against Enterobacterales strains, i.e., MICF × MICA < 256 (where MICF and MICA are the fosfomycin and amikacin MICs, respectively). Monte Carlo simulations predict that a standard fosfomycin-amikacin neonatal regimen would achieve >99% probability of pharmacodynamic success for strains with MICs below this threshold. We conclude that the combination of fosfomycin with amikacin is a viable regimen for the empirical treatment of neonatal sepsis and is suitable for further clinical assessment in a randomized controlled trial.


Assuntos
Antibacterianos , Fosfomicina , Sepse Neonatal , Amicacina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Sepse Neonatal/tratamento farmacológico
8.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32778549

RESUMO

Enterobacteriaceae that produce metallo-ß-lactamases (MBLs) are an emerging threat to public health. The metallo-ß-lactamase inhibitor (MBLi) ANT2681 inhibits the enzymatic activity of MBLs through interaction with the dinuclear zinc ion cluster present in the active site that is common to these enzymes. ANT2681 is being codeveloped, with meropenem as the partner ß-lactam, as a novel combination therapy for infections caused by MBL-producing bacteria. The pharmacokinetics/pharmacodynamics of meropenem-ANT2681 were studied in a murine neutropenic thigh model of NDM-producing Enterobacteriaceae Dose-ranging studies were performed with both meropenem and ANT2681. Dose fractionation experiments were performed to identify the relevant pharmacodynamic index of ANT2681 when coadministered with meropenem. A background of meropenem at 50 mg/kg of body weight every 4 h (q4h) subcutaneously (s.c.) had minimal antibacterial effect. On this background, half-maximal effect was observed with an ANT2681 dose of 89 mg/kg q4h intravenously (i.v.). The dose fractionation study showed that area under the concentration-time curve (AUC) was the relevant pharmacodynamic index for the inhibitor. The magnitude of the meropenem-ANT2681 exposure required to achieve stasis was explored using 5 NDM-producing strains. A 3-dimensional surface fitted to the pharmacodynamic data from the 5 strains suggested that stasis was achieved with an fT > potentiated meropenem MIC of 40% and ANT2681 AUC of 700 mg · h/liter. These data and analyses provide the underpinning evidence for the combined use of meropenem and ANT2681 for clinical infections.


Assuntos
Infecções por Enterobacteriaceae , Inibidores de beta-Lactamases , Animais , Antibacterianos/farmacologia , Enterobacteriaceae , Infecções por Enterobacteriaceae/tratamento farmacológico , Meropeném/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Monobactamas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...